Installation & Administration Guide

Configuration

The activate() function that starts the IoT Agent receives as single parameter with the configuration for the IoT Agent. The Agent Console reads the same configuration from the config.js file.

Global Configuration

These are the parameters that can be configured in the global section:

  • logLevel: minimum log level to log. May take one of the following values: DEBUG, INFO, ERROR, FATAL. E.g.: 'DEBUG'.
  • contextBroker: connection data to the Context Broker (host and port). E.g.:
{
    host: '192.168.56.101',
    port: '1026'
}
  • If you want to use NGSI v2:
{
    host: '192.168.56.101',
    port: '1026',
    ngsiVersion: 'v2'
}
  • If you want to use NGSI-LD (experimental):
{
    host: '192.168.56.101',
    port: '1026',
    ngsiVersion: 'ld',
    jsonLdContext: 'http://context.json-ld' // or ['http://context1.json-ld','http://context2.json-ld'] if you need more than one
}

Where http://context.json-ld is the location of the NGSI-LD @context element which provides additional information allowing the computer to interpret the rest of the data with more clarity and depth. Read the JSON-LD specification for more information.

  • If you want to support a "mixed" mode with both NGSI-v2 and NGSI-LD (experimental):
{
    host: '192.168.56.101',
    port: '1026',
    ngsiVersion: 'mixed',
    jsonLdContext: 'http://context.json-ld' // or ['http://context1.json-ld','http://context2.json-ld'] if you need more than one
}

Under mixed mode, NGSI v2 payloads are used for context broker communications by default, but this payload may also be switched to NGSI LD at service group or device provisioning time using the ngsiVersion field in the provisioning API. The ngsiVersion field switch may be added at either group or device level, with the device level overriding the group setting.

  • server: configuration used to create the Context Server (port where the IoT Agent will be listening as a Context Provider and base root to prefix all the paths). The port attribute is required. If no baseRoot attribute is used, '/' is used by default. E.g.:
{
    baseRoot: '/',
    port: 4041
}
  • stats: configure the periodic collection of statistics. Use interval in milliseconds to set the time between stats writings.
stats: {
    interval: 100;
}
  • authentication: authentication data, for use in retrieving tokens for devices with a trust token (required in scenarios with security enabled in the Context Broker side). Currently, two authentication provider are supported: keystone and oauth2. Authentication need to be enabled by setting the field enabled to true. In keystone based authentication, the trust associated to the device or deviceGroup is a token representing a specific user and his rights on a given domain (i.e. combination of fiware-service and fiware-servicepath). The authentication process use the trust delegation workflow to check if the trust provided is valid, in which case return a x-subject-token that can be used to authenticate the request to the Context Broker. Required parameters are: the url of the keystone to be used (alternatively host and port but if you use this combination, the IoT Agent will assume that the protocol is HTTP), the user and password to which it is delegated the trust verification. E.g.:
{
    enabled: true,
    url: 'https://localhost:5000',
    type: 'keystone',
    user: 'iotagent',
    password: 'iotagent'
}

In oauth2 based authentication, two types of tokens can be used depending on the availability in the IDM to be used. On one hand, the trust associated to the device or deviceGroup is a refresh_token issued by a specific user for the Context Broker client. The authentication process uses the refresh_token grant type to obtain an access_token that can be used to authenticate the request to the Context Broker. At the time being the assumption is that the refresh_token is a not expiring offline_token (we believe this is the best solution in the case of IoT Devices, since injecting a refresh token look may slow down communication. Still, the developer would be able to invalidate the refresh token on the provider side in case of security issues connected to a token). The code was tested using Keycloak, Auth0 and FIWARE Keyrock (it may require customisation for other providers - while OAuth2 is a standard, not all implementations behave in the same way, especially as regards status codes and error messages). Required parameters are: the url of the OAuth 2 provider to be used (alternatively host and port but if you use this combination, the IoT Agent will assume that the protocol is HTTP), the tokenPath to which the validation request should be sent (/auth/realms/default/protocol/openid-connect/token for Keycloak and Auth0, /oauth2/token for Keyrock), the clientId and clientSecret that identify the Context Broker, and the header field that should be used to send the authentication request (that will be sent in the form Authorization: Bearer <access_token>). E.g.:

{
    enabled: true,
    type: 'oauth2',
    url: 'http://localhost:3000',
    header: 'Authorization',
    clientId: 'context-broker',
    clientSecret: 'c8d58d16-0a42-400e-9765-f32e154a5a9e',
    tokenPath: '/auth/realms/default/protocol/openid-connect/token'
}

Nevertheless, this kind of authentication relying on refresh_token grant type implies that when the acces_token expires, it is needed to request a new one from the IDM, causing some overhead in the communication with the Context Broker. To mitigate this issue, FIWARE KeyRock IDM implements permanent tokens that can be retrieved using scope=permanent. With this approach, the IOTA does not need to interact with the IDM and directly include the permanent token in the header. In order to use this type of token, an additional parameter permanentToken must be set to true in the authentication configuration. An environment variable IOTA_AUTH_PERMANENT_TOKEN can be also used for the same purpose. For instance:

{
    type: 'oauth2',
    url: 'http://localhost:3000',
    header: 'Authorization',
    clientId: 'context-broker',
    clientSecret: '0c2492e1-3ce3-4cca-9723-e6075b89c244',
    tokenPath: '/oauth2/token',
    enabled: true,
    permanentToken: true
}
  • deviceRegistry: type of Device Registry to create. Currently, two values are supported: memory and mongodb. If the former is configured, a transient memory-based device registry will be used to register all the devices. This registry will be emptied whenever the process is restarted. If the latter is selected, a MongoDB database will be used to store all the device information, so it will be persistent from one execution to the other. Mongodb databases must be configured in the mongob section (as described bellow). E.g.:
{
    type: "mongodb";
}
  • mongodb: configures the MongoDB driver for those repositories with 'mongodb' type. If the host parameter is a list of comma-separated IPs, they will be considered to be part of a Replica Set. In that case, the optional property replicaSet should contain the Replica Set name. If the database requires authentication, username (username), password (password) and authSource (authSource) can be set. If the database requires TLS/SSL connection but any validation of the certificate chain is not mandatory, all you need is to set the ssl (ssl) option as true to connect the database. If you need to add more complex option(s) such as retryWrites=true or w=majority when connection database, extraArgs (extraArgs) can be used to perform it. For The MongoBD driver will retry the connection at startup time retries times, waiting retryTime seconds between attempts, if those attributes are present (default values are 5 and 5 respectively). E.g.:
{
  host: 'localhost',
  port: '27017',
  db: 'iotagent',
  retries: 5,
  retryTime: 5
}
{
  host: 'mongodb-0,mongodb-1,mongodb-2',
  port: '27017',
  db: 'iotagent',
  replicaSet: 'rs0',
  user: 'rootuser',
  password: 'password',
  authSource: 'admin',
  ssl: true,
  extraArgs: {
    retryWrites: true,
    readPreference: 'nearest',
    w: 'majority'
  },
  retries: 5,
  retryTime: 5
}
  • iotManager: configures all the information needed to register the IoT Agent in the IoTManager. If this section is present, the IoTA will try to register to a IoTAM in the host, port and path indicated, with the information configured in the object. The IoTAgent URL that will be reported will be the providedUrl (described below) with the added agentPath:
{
    host: 'mockediotam.com',
    port: 9876,
    path: '/protocols',
    protocol: 'GENERIC_PROTOCOL',
    description: 'A generic protocol',
    agentPath: '/iot'
}
  • types: See Type Configuration in the Configuration API section below.
  • eventType: Default type for the Events (useful only with the addEvents plugin).
  • service: default service for the IoT Agent. If a device is being registered, and no service information comes with the device data, and no service information is configured for the given type, the default IoT agent service will be used instead. E.g.: 'smartGondor'.
  • subservice: default subservice for the IoT Agent. If a device is being registered, and no subservice information comes with the device data, and no subservice information is configured for the given type, the default IoT agent subservice will be used instead. E.g.: '/gardens'.
  • providerUrl: URL to send in the Context Provider registration requests. Should represent the external IP of the deployed IoT Agent (the IP where the Context Broker will redirect the NGSI requests). E.g.: 'http://192.168.56.1:4041'.
  • iotaVersion: indicates the version of the IoTA that will be displayed in the about method (it should be filled automatically by each IoTA).
  • appendMode: if this flag is activated, the update requests to the Context Broker will be performed always with APPEND type, instead of the default UPDATE. This have implications in the use of attributes with Context Providers, so this flag should be used with care. This flag is overwritten by autoprovision flag in group or device provision.
  • dieOnUnexpectedError: if this flag is activated, the IoTAgent will not capture global exception, thus dying upon any unexpected error.
  • singleConfigurationMode: enables the Single Configuration mode for backwards compatibility (see description in the Overview). Default to false.
  • timestamp: if this flag is activated:
    • For NGSI-v2, the IoT Agent will add a TimeInstant metadata attribute to all the attributes updated from device information. This flag is overwritten by timestamp flag in group or device
    • With NGSI-LD, the standard observedAt property-of-a-property is created instead.
  • defaultResource: default string to use as resource for the registration of new Configurations (if no resource is provided).
  • defaultKey: default string to use as API Key for devices that do not belong to a particular Configuration.
  • componentName: default string identifying the component name for this IoT Agent in the logs.
  • pollingExpiration: expiration time for commands waiting in the polling queue in miliseconds. If a command has been in the queue for this amount of time without being collected by the device, the expiration daemon will reclaim it. This attribute is optional (if it doesn't exist, commands won't expire).
  • pollingDaemonFrequency: time between collection of expired commands in milliseconds. This attribute is optional (if this parameter doesn't exist the polling daemon won't be started).
  • autocast: When enabled, the IoT Agents will try to cast attribute's values considering the JSON native type (only for NGSI v2).
  • multiCore: When enabled, the IoT Agents runs in multi-thread environment to take advantage of multi-core systems. It allows two values true or false. This attribute is optional with default to false, which means that the IoTAgent runs in a single thread. For more details about multi-core functionality, please refer to the Cluster module in Node.js and this section of the library documentation.
  • defaultExpressionLanguage: the default expression language used to compute expressions, possible values are: legacy or jexl. When not set or wrongly set, legacy is used as default value.
  • fallbackTenant - For Linked Data Context Brokers which do not support multi-tenancy, this provides an alternative mechanism for supplying the NGSILD-Tenant header. Note that NGSILD-Tenant has not yet been included in the NGSI-LD standard (it has been proposed for the next update of the standard, but the final decision has yet been confirmed), take into account it could change. Note that for backwards compatibility with NGSI v2, the fiware-service header is already used as alternative if the NGSILD-Tenant header is not supplied.
  • fallbackPath - For Linked Data Context Brokers which do not support a service path, this provides an alternative mechanism for suppling the NGSILD-Path header. Note that for backwards compatibility with NGSI v2, the fiware-servicepath header is already used as alternative if the NGSILD-Path header is not supplied. Note that NGSILD-Path has not yet been included in the NGSI-LD standard (it has been proposed for the next update of the standard, but the final decision has yet been confirmed), take into account it could change
  • explicitAttrs: if this flag is activated, only provisioned attributes will be processed to Context Broker. This flag is overwritten by explicitAttrs flag in group or device provision.
  • defaultEntityNameConjunction: the default conjunction string used to compose a default entity_name when is not provided at device provisioning time; in that case entity_name is composed by type + : + device_id. Default value is :. This value is overwritten by defaultEntityNameConjunction in group provision.
  • relaxTemplateValidation: if this flag is activated, objectId attributes for incoming devices are not validated, and may exceptionally include characters (such as semi-colons) which are forbidden according to the NGSI specification. When provisioning devices, it is necessary that the developer provides valid objectId-name mappings whenever relaxed mode is used, to prevent the consumption of forbidden characters.

Configuration using environment variables

Some of the configuration parameters can be overriden with environment variables, to ease the use of those parameters with container-based technologies, like Docker, Heroku, etc...

The following table shows the accepted environment variables, as well as the configuration parameter the variable overrides.

Environment variable Configuration attribute
IOTA_CB_URL contextBroker.url
IOTA_CB_HOST contextBroker.host
IOTA_CB_PORT contextBroker.port
IOTA_CB_NGSI_VERSION contextBroker.ngsiVersion
IOTA_NORTH_HOST server.host
IOTA_NORTH_PORT server.port
IOTA_PROVIDER_URL providerUrl
IOTA_AUTH_ENABLED authentication.enabled
IOTA_AUTH_TYPE authentication.type
IOTA_AUTH_HEADER authentication.header
IOTA_AUTH_URL authentication.url
IOTA_AUTH_HOST authentication.host
IOTA_AUTH_PORT authentication.port
IOTA_AUTH_USER authentication.user
IOTA_AUTH_PASSWORD authentication.password
IOTA_AUTH_CLIENT_ID authentication.clientId
IOTA_AUTH_CLIENT_SECRET authentication.clientSecret
IOTA_AUTH_TOKEN_PATH authentication.tokenPath
IOTA_AUTH_PERMANENT_TOKEN authentication.permanentToken
IOTA_REGISTRY_TYPE deviceRegistry.type
IOTA_LOG_LEVEL logLevel
IOTA_TIMESTAMP timestamp
IOTA_IOTAM_URL iotManager.url
IOTA_IOTAM_HOST iotManager.host
IOTA_IOTAM_PORT iotManager.port
IOTA_IOTAM_PATH iotManager.path
IOTA_IOTAM_AGENTPATH iotManager.agentPath
IOTA_IOTAM_PROTOCOL iotManager.protocol
IOTA_IOTAM_DESCRIPTION iotManager.description
IOTA_MONGO_HOST mongodb.host
IOTA_MONGO_PORT mongodb.port
IOTA_MONGO_DB mongodb.db
IOTA_MONGO_REPLICASET mongodb.replicaSet
IOTA_MONGO_USER mongodb.user
IOTA_MONGO_PASSWORD mongodb.password
IOTA_MONGO_AUTH_SOURCE mongodb.authSource
IOTA_MONGO_RETRIES mongodb.retries
IOTA_MONGO_RETRY_TIME mongodb.retryTime
IOTA_MONGO_SSL mongodb.ssl
IOTA_MONGO_EXTRAARGS mongodb.extraArgs
IOTA_SINGLE_MODE singleConfigurationMode
IOTA_APPEND_MODE appendMode
IOTA_POLLING_EXPIRATION pollingExpiration
IOTA_POLLING_DAEMON_FREQ pollingDaemonFrequency
IOTA_AUTOCAST autocast
IOTA_MULTI_CORE multiCore
IOTA_JSON_LD_CONTEXT jsonLdContext
IOTA_FALLBACK_TENANT fallbackTenant
IOTA_FALLBACK_PATH fallbackPath
IOTA_DEFAULT_EXPRESSION_LANGUAGE defaultExpressionLanguage
IOTA_EXPLICIT_ATTRS explicitAttrs
IOTA_DEFAULT_ENTITY_NAME_CONJUNCTION defaultEntityNameConjunction
IOTA_RELAX_TEMPLATE_VALIDATION relaxTemplateValidation

Note:

  • If you need to pass more than one JSON-LD context, you can define the IOTA_JSON_LD_CONTEXT environment variable as a comma separated list of contexts (e.g. 'http://context1.json-ld,http://context2.json-ld')